
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 289 (2006) 278–293
0022-460X/$ -

doi:10.1016/j.

�Correspon

E-mail add
www.elsevier.com/locate/jsvi
Design of an optimal shock-damping isolator
with application to casters

Runling Pan, Jin Jiang�, Ralph O. Buchal

Faculty of Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada

Received 23 February 2004; received in revised form 28 January 2005; accepted 6 February 2005

Available online 29 March 2005
Abstract

Design of an optimal shock-damping isolator is presented in this paper with specific application to
casters. The design is first formulated as an optimization problem to minimize the peak acceleration of a
load while keeping the maximal deflection of the isolator within a specified physical limit. The resulting
solution is a constant force isolator. However, it is difficult to realize a constant force isolator with
conventional mechanisms using linear springs and dampers. To implement such an isolator physically, a
novel mechanism employing multiple linear springs has been developed. The structure and the parameters
of the springs have been chosen by optimization techniques, and the resulting mechanism has been
embodied in a prototype caster design. This paper presents the concept, design procedure, simulation and
experimental evaluation results of a prototype optimal shock-damping caster in detail. The peak
acceleration of this new design is only 65% of the existing caster. From a manufacturing point of view, this
newly designed caster is not much more complex than existing ones.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Delicate equipment may be very sensitive to shocks and prone to shock-induced damage. In
practice, protective devices are often used to minimize potential shocks in such situations. For
movable platforms, one of the solutions is to mount shock-absorbing casters on the bottom of the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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cart. For example, such casters can be found in hospitals to transport sensitive equipment, or even
patients, and on factory floors to move precision machinery and instruments. Even though casters
come in different shapes and sizes, most of them reply on spring and damper (often made of
rubber) mechanisms to absorb the energy induced from shocks. The shock-absorbing efficiency of
this type of caster is determined by the resilient characteristics of the springs and the cushioning
rubber in the dampers. To achieve desired performance, the amount of spring deflection is also an
important factor to be considered. Generally speaking, increasing spring deflection improves the
shock-absorbing capability, but also increases the size of the caster. However, in many
circumstances, constraints on physical dimensions may prevent one from using over-sized casters.
Hence, it is important to find new ways to improve the shock-damping capability of a caster
without significant increase in the spring travel. The performance of such shock isolators can be
optimized to a certain extent by using optimal shock isolation mechanisms. The objective of this
paper is to investigate the design of such an optimal isolator.

Generally speaking, shock isolators can be classified into three categories, namely passive,
active and semi-active [1,2] isolators. Traditional passive isolators consist of springs that are used
to temporarily store the shock-induced energy and dampers in which this energy can be gradually
dissipated. They offer a simple and reliable means to protect the load from shock-induced damage
[3,4]. However, their performance may be limited under severe shock conditions. There has been
extensive research into the use of feedback control techniques to improve the shock isolation
capabilities by employing actuators, sensors and real-time controllers. These isolators are known
as active isolators [5–9]. Active isolators, if designed properly, may provide superior performance
to passive isolators, because they rely on separate energy sources (power from the actuators) to
compensate for shocks. However, active isolators are usually complex, expensive and may run the
risk of instability due to time-delays in the feedback loop, or in the event of sensor and actuator
malfunctions. Semi-active isolators provide a compromise between active and passive isolators
[10–13]. A typical semi-active isolator consists of a passive spring in parallel with an active
damper. The isolator generally requires no external energy source. The force characteristics of the
damper can be regulated automatically through adjustment of an orifice depending on the caster
travel. The isolator considered in this paper belongs to the class of passive isolators.

In this paper, the design of optimal passive shock-damping isolators is examined first from both
theoretical analysis and physical implementation points of view. Subsequently, a prototype caster
is designed, constructed and tested. Dynamic simulations of the design and extensive
experimentation on the prototype caster have been carried out. It is concluded that the newly
designed optimal shock-damping caster can reduce the maximal shock to as little as 65% of the
peak acceleration of the original design without increasing the size of the caster. Moreover, the
new prototype does not significantly increase in the complexity of the caster assembly.

The paper is organized as follows: The problem of shock-damping isolator is formulated in
Section 2 as a constrained min–max optimization problem. The solution to this optimization
problem is examined in Section 3, with physical explanations. The conceptual design and physical
prototyping of the optimal shock-damping caster are discussed in Section 4, where a caster rolling
over a bump of measurable height is used as the specific shock input condition. The design of the
prototype caster is also described in detail in this section. The results from simulation studies are
analyzed in Section 5. The experimental results of the prototype caster are compared with those
from an existing caster in Section 6. Finally, conclusions are drawn in Section 7.
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2. Formulation of optimal shock isolation problem

The shock isolation problem can be studied by using a single-degree-of-freedom (sdof) system
as shown in Fig. 1. The object being protected is represented by the rigid body that is attached to
the rigid movable base through the shock isolator. It is assumed that the base moves along the
vertical direction and the body can move relative to the base in the same direction. The governing
equation of motion for this system is

m €xðtÞ þ uðxðtÞ � yðtÞ; _xðtÞ � _yðtÞ; tÞ ¼ 0, (1)

where m is the mass of the body, x(t) represents the displacement of the body, and y(t) represents
the displacement of the base which is subjected to external forces or displacement excitations. The
second term in Eq. (1), uðxðtÞ � yðtÞ; _xðtÞ � _yðtÞ; tÞ; represents the total force acting on the mass in a
general form, without assuming linearity.

Two criteria are often used in practice to specify the performance of an isolator. They are the
peak acceleration of the body, i.e. max j €xðtÞj; and the peak deflection of the isolator, i.e.
max jxðtÞ � yðtÞj: The peak acceleration is proportional to the maximal isolator force acting on the
body. If the peak acceleration is too high, damage to the equipment as part of the body may
result. The peak deflection of the isolator must be kept within the allowable travel or the range of
motion of the isolator. Mathematically, these two performance criteria can be described by [14]

J1 ¼ max jxðtÞ � yðtÞj; J2 ¼ max j €xðtÞj, (2)

where the performance index J1 defines the peak displacement of the body relative to the base,
which is equivalent to the peak deflection of the isolator, and J2 represents the absolute peak
acceleration of the body.

Clearly, the above two objective functions are related through the dynamic characteristics of the
isolator. Depending on a specific application, either J1 or J2 can be adopted as the main
performance criterion in the isolator design, while the other acts as a constraint. For example, the
peak acceleration can be used as the primary design criterion, where a stringent limit on the
acceleration is imposed. On the other hand, if the size of a caster is of primary consideration,
Fig. 1. Single dof model of shock isolator; x(t) is the displacement of the body and y(t) is the displacement of the base.
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the peak deflection may be used as the design objective to minimize the travel, hence, the size of
the caster.

Since the objective considered in this paper is to minimize the peak acceleration in the event of a
shock, the optimization problem is to minimize the performance criterion J2, while keeping J1

within an allowable limit for a given level of shock input. This can be formulated as a min–max
optimization problem:

Minimize maxj €xðtÞj
� �

; under the constraint max jxðtÞ � yðtÞjpD0, (3)

where D0 denotes the allowable limit on the deflection of the isolator. In this case, the
optimization variables are the second term on the left-hand side of Eq. (1), i.e. the internally
generated force from the isolator, uðxðtÞ � yðtÞ; _xðtÞ � _yðtÞ; tÞ:
3. Principle of optimal shock-damping isolators

3.1. Problem description

To achieve effective shock protection, the level and type of external shock excitations should be
defined properly in advance. This paper concentrates on a particular type of shock excitation
induced when the isolator (caster) rolls over a bump of a certain height traveling at a constant
horizontal speed. This mimics many practical situations. This kind of shock excitation has been
widely accepted as a standard performance test by caster manufacturers. If the speed of travel is
greater than a certain level, the caster will become airborne after hitting the bump, and returns to
the surface as a free-falling body. Extensive testing by caster manufacturers has shown that the
peak acceleration usually occurs at the moment of impact when the isolator hits the surface again.
Therefore, in this paper, the shock isolator design is focused mainly on minimizing the peak
acceleration at this instant of impact. Furthermore, if the characteristic of the isolator is
underdamped, it has been shown [15] that the peak acceleration occurs within the duration of T/4
after the initial impact, where T is the natural period of the system. In other words, the peak
acceleration occurs during the initial compression phase of the isolator stroke after the impact.

When a free body falls from a height H, the body will have the maximal downward velocity just
before the moment of impact. The velocity of the body then decreases to zero by deflecting the
isolator. The work, W, done by the force of the isolator to the body is equal to the change in its
kinetic energy. Therefore, the following is true:

W ¼ mgH, (4)

where g is the acceleration of gravity. Different isolators may have different force–displacement
trajectories while absorbing the shock-induced energy during the deflection process. For a given
amount of shock energy input, an optimal isolator is the one that achieves the minimal peak
acceleration among a group of isolators satisfying the conditionZ x

0

uðxðtÞ; _xðtÞ; tÞdx ¼ mgH, (5)

while x(t) is within a given deflection limit.
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It is important to point out that the integrand in Eq. (5) is another way of representing the
internal force generated by the isolator. In Eq. (5), the base position y(t) is explicitly represented
by x(t) through the isolator dynamic equation. The integration of the force with respect to the
displacement is nothing but the amount of energy temporarily stored or dissipated in the isolator.
The optimal shock isolator represents a force–displacement trajectory that satisfies Eq. (5), while
having the lowest peak acceleration.

Since the above optimization attempts to minimize the maximal acceleration, the characteristics
of the solution to this min–max problem are very straightforward. This can be explained
intuitively through graphical representations as shown in Fig. 2, where it shows three isolators
that all satisfy Eq. (5), but with different dynamic characteristics. These characteristics as labeled
1, 2 and 3, are shown in the acceleration–deflection plane. The shaded area represents the work
that has to be done by the isolators (the right-hand side of Eq. (5)). The area under each curve
represents the work done by the respective isolator. For a given bump size, the areas under all
three curves are equal. Clearly, the isolator resulting in the lowest peak acceleration is the one with
a constant force, which is curve 3 in this figure. Although all three isolators absorb and dissipate
the same amount of energy while satisfying the same deflection constraint, the peak accelerations
for isolators 1 and 2 are greater than that of the isolator 3. If one thinks that the shaded area
represents a ‘water-bed’, the solution satisfies what so-called ‘water-bed’ effect, i.e. when the
acceleration response curve is pushed further down at one deflection, the acceleration at another
deflection has to go up. The minimal peak acceleration occurs only when the water is at a constant
level. The characteristics of the isolators beyond the limit of travel are not shown here. High peak
accelerations could occur if the isolator hits its limits, which is why it is important to respect the
deflection constraints in the optimization process.

Physically, the above means that soon after the isolator with the body hits the surface, the
optimal isolator starts to generate a constant force to maintain the acceleration of the body at a
constant level until the body stops moving, i.e.

uðxðtÞ; _xðtÞ; tÞ ¼ F const; t 2 ð0;T=4Þ, (6)
Deflection 

Work done by isolator force: Wa = mgH  

Fo
rc

e

xlimit

1

2

3Allowable peak 
acceleration 

Fig. 2. Three force–deflection curves with equal areas (work done); the curve number 3 has the minimum peak

acceleration.
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where uðxðtÞ; _xðtÞ; tÞ represents the combination of forces from both the spring and the damper in a
spring–damper system, and Fconst is a design parameter to keep the isolator travel x(t) within the
given physical limit. For the same deflection and work (area under the force–deflection curve), the
peak acceleration for a constant-force isolator can be as low as 50% of the peak acceleration of a
linear spring isolator. The question now becomes how to physically realize such a constant force
isolator. This will be the subject of the next section.
3.2. Realization of an optimal shock-damping isolator

A constant force isolator cannot be easily realized by using a conventional linear spring and
damper mechanism, as the force generated by a spring is proportional to its displacement and the
force generated by a viscous damper depends on the velocity of the movement. There are several
mechanisms based on spring and linkage structures that can produce a nearly constant force [16].
To implement a nearly constant force, a mechanism using multiple linear springs has been
considered in this paper. The overall structure is shown in Fig. 3. The vertically mounted spring is
referred to as the main spring and the springs mounted on the sides are called the compensating
springs. The parameters L, h and a; are geometric parameters that determine the specific
force–displacement characteristics. For easy analysis, the deflection of the main spring is denoted
by x1 and that of the compensating springs by x2.

The four configurations of the isolator are illustrated in Fig. 3 as the mechanism goes through
the compression phase immediately after it strikes the surface. Position (a) represents the first
instant of the impact. Once the spring compression begins, the isolator passes through two more
stages at positions (b) and (c) until it reaches position (d) at T/4. At position (a), the tangent
Reference
Plane

(b)

(c) (d)

L

h x1

(a)

Ftotal
Ftotal

FtotalFtotal

F2
F2 F2

F1

F1

F2

F2F2

F1

F1

�

Fig. 3. Multiple-spring system to achieve near-constant force: (a) the first instant of impact; (b) the compression phase;

(c) the force toggling position; (d) the phase with reversed force direction.



ARTICLE IN PRESS

R. Pan et al. / Journal of Sound and Vibration 289 (2006) 278–293284
function of the angle a between a compensating spring and the horizontal reference is

tan a ¼
h

L
. (7)

At position (b), it can be seen that

tan a ¼
h � x1

L
40. (8)

At position (c), the compensating springs do not contribute any force component in the vertical
direction. It should be noted that this is a unique position, called the toggling position, since from
this point onwards, the compensating springs toggle the direction of the vertical force from
upward to downward at the position (d):

tan a ¼
h � x1

L
o0. (9)

Because of the toggling behavior of the compensating springs, a nonlinear force–displacement
relationship can be achieved using linear compensating springs during the compression process. A
nearly constant resultant force can be generated for a finite deflection range by combining the
forces from all three springs. Even though no dampers are used in this mechanism, all physical
casters have some friction damping. In practice, the magnitude of the damping force is small
compared to the spring force; hence, it can be neglected to simplify the analysis.

3.3. Parameter selection for the optimal shock-damping mechanism

As shown previously, the total force generated by the combined springs in the vertical direction
depends on several parameters, such as the structural dimensions h and L, spring stiffness k1, k2 as
well as the spring preload forces Fpreload1, Fpreload2. These parameters can be grouped together and
represented as the following parameter vector v:

v ¼ ½k1; k2; h;L;Fpreload1;Fpreload2	. (10)

Consequently, the resultant vertical force generated by the isolator can be expressed as

Fðv; x1Þ; 0px1px1m, (11)

where x1m is the deflection limit of the main spring. If the parameters in v are chosen properly, a
nearly constant force can be achieved in the desired range of the spring deflection. Clearly, the
relationships between the desired force and these parameters are nonlinear. Suitable parameters to
achieve the desired force–deflection characteristics can be determined by a nonlinear optimization
procedure.

For desired deflection–force characteristics (i.e. desired constant force), the parameters can be
chosen by using the following least-squares-based optimization:

minimize
Xn

i¼1

½Fðv; x1iÞ � Fdesired
const 	2 for i ¼ 1; 2; . . . ; n, (12)

where the optimization variables are the parameters in the vector v. Fdesired
const represents the desired

constant force, and n is the number of the data points used in the optimization. The parameters
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should also satisfy some physical constraints, e.g. vjLpv
j pvjU for j ¼ 1; 2; . . . ;m, where m is the
number of parameters, vjL and vjU are the lower and upper bounds in value for each element,
respectively. The spring stiffness values k1, k2 are restricted to commercially available values.
4. Design and prototyping of an optimal shock-damping caster

4.1. An existing caster design

A caster is a mechanical assembly consisting of the following elements: a top plate, yoke, wheel,
wheel bearing, thread guards, axle nuts and washers. A typical caster is shown in Fig. 4.

The kinematic model of the existing Darcor SL404 caster is shown in Fig. 5. Two springs are
mounted in parallel between the pivot O1 and the moving end B. Assuming that jOAj ¼ p; jOO1j ¼

q; jOCj ¼ l and using the moment static equilibrium law, the following can be established:

p� Fs1 ¼ l� F, (13a)

where Fs1 is the spring force and F is the total force acting on the body that rests on the caster
including the gravity component.

4.2. Converting an existing caster to a constant force caster

Even though one could design a new optimal shock-damping caster based on the principles
presented so far, in the current research, it was decided to modify an existing caster to realize the
optimal design. There are two reasons for this decision: (1) it allows easy comparison of the
performance between the existing caster and the new design, and (2) it reduces the cost of
prototyping by using the components already available from the existing caster.

The principle of the optimal isolator presented previously can be readily applied to designing
optimal shock-damping casters. The design objective is for the modified caster to produce only
half the peak acceleration of the existing caster for the same shock input and peak deflection.
O

A

O1

B

C

Rotating arm

Yoke 

Spring

Wheel

Fig. 4. An existing caster (Darcor SL404).
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Fig. 5. Kinematic model of the existing Darcor SL404 caster.
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Based on this design objective, the required constant force can be determined as follows. For a
100 kg body running over a 100 bump at a speed 3 km/h, the peak acceleration is 6 g with the
original caster. With the optimal caster design, the peak acceleration will be about 3 g. This means
that, after taking into account the gravity load, a desired constant force of approximately 4000N
is needed, which has to be generated by the optimal caster.

Although the principle of a multiple spring-based constant force shock isolator is illustrated in
Fig. 3, the actual implementation need not resemble this configuration exactly. In fact, a possible
mechanism based on modifying an existing caster using multiple springs is illustrated in Fig. 6.
O2 is one end of the compensating spring while D, D0 and D00 represent three different positions at
the other end. In this case, D is the initial position, D0 stands for the toggling position and D00

refers to a point after the toggling. The compensating springs will produce counter-clockwise
moments beyond the toggling point. The toggling angle between OD and OD0 is defined as yt: Fs2

represents the compensating spring force and F?
s2 represents the component of Fs2 perpendicular

to link OD. The bold arrows represent the directions of the spring moments. The resultant spring
force consists of Fs1 from the main spring and F?

s2 from the compensating spring. Note that the
deflection limit has now become the limit on the angle yt:

Theoretically, D and O2 can be placed anywhere on two concentric circles centered at O, such
that D, O2 and O are collinear. In practice, they are located to satisfy the physical constraints of
the caster design.
4.3. Mathematical model and parameter optimization

The static equilibrium equation of the modified caster can be expressed as

p� Fs1 þ r1 � Fs2 ¼ l� F. (13b)
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No moment is created by the compensating spring at the toggling position since OD0 and OO2 are
aligned, hence,

r1 � Fs2 ¼ 0. (14)

After some manipulations, the expression for a nearly constant force F can be expressed as

F ¼
1

sinðyþ aÞl
p Fpreload1 þ

lFdesired
const sinðyt þ aÞ

cos ytþb
2

� �
pDx1_t

�
Fpreload1

Dx1_t

2
4

3
5Dx1

0
@

1
A cos

yþ b
2

� �8><
>:

þ r1ðFpreload2 þ k2Dx2Þ
r2 sinðyt � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21 þ r22 � 2r1r2 cosðyt � yÞ
q

9>=
>;, ð15Þ

where Fpreload1 and Fpreload2 represent the preloads in the main and compensating springs,
respectively. Dx1_t is the compression of the main spring at the toggling position. Dx1 and Dx2 are
the spring deflections, which can be shown to be functions of the geometrical parameters of the
system,

Dx1 ¼ f 1ðp; q; b; yÞ; Dx2 ¼ f 2ðr1; r2; yt; yÞ. (16)

Clearly, the force F is a nonlinear function of the system parameters as shown in Eqs. (15) and
(16). It depends on the following parameters: r1, r2, yt; k2, Fpreload1, Fpreload2, a; b; p, q and l. The
independent variable is y; which represents the angular deflection of the rotating arm from its fully
extended position. Let v be the parameter vector,

v ¼ ½r1; r2; yt; k2;Fpreload1;Fpreload2; a; b; p; q; l	. (17)
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Then the force acting on the body can be expressed as

F ¼ f 3ðv; yÞ; 0pypym, (18)

where ym is the maximal rotation angle of the turning arm. It corresponds to the maximal
deflection.

In order to maintain the original structure of the existing caster, some structural parameters
remain unchanged. The optimization has been carried out on the remaining parameters to
obtain the desired force characteristics. The optimal parameter values are represented by
v
 ¼ ½r
1; r



2; y



t ; k



2;F



preload1;F



preload2	 which minimizes

P
i ½F ðv; yiÞ � Fdesired

const 	2 for yi; i ¼

1; 2; . . . ; n; while satisfying boundary constraints: vjLpv
j pvjU for j ¼ 1; 2; . . . ;m:
Additional engineering factors have to be considered when modifying the existing caster,

including available clearance and interference between the moving parts, and commercial
availability of springs with the chosen spring stiffnesses. The optimal feasible parameters are
shown in Table 1.

Based on the analysis in this section, a modified caster has been designed and constructed as
shown in Fig. 7.
5. Simulation results

5.1. Shock damping tests

The simulations of bump tests were conducted using MSC Dynamic Designer [17] motion
analysis software. The acceleration and deflection responses for both the existing and the modified
Table 1

Optimal design parameters

r1
* r2

* y
t k1 Fpreload1
* k2

* Fpreload2
*

35mm 70mm 151 111N/mm 750N 353N/mm 3000N

Fig. 7. The modified caster.
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casters are shown in Figs. 8 and 9, respectively. In Fig. 8, the first spike of acceleration occurs
when the caster hits the bump for the first time. The caster then goes airborne and becomes a free-
falling body with gravitational acceleration of �g. The second and largest peak acceleration
occurs when the caster impacts the surface after the first bounce. The caster bounces several more
times, with gradually decreasing acceleration peaks. The maximal peak acceleration of the
optimal caster is 3.05g, which is about 53% of the maximal peak acceleration of the original caster
of 5.79g. Fig. 9 shows a comparison of the deflections. In this figure, the resting (uncompressed)
height is 100mm. Peaks correspond to the caster becoming airborne, and valleys indicate
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spring compression or deflection. Both casters have the similar maximal peak deflections of
approximately 24mm.
6. Experimental results

As a part of this investigation, a comparison of experimental and simulated load–deflection
curves for the existing caster is shown in Fig. 10 and the modified caster is shown in Fig. 11.

The modified caster exhibits a softening spring characteristic, but it is not quite an ideal
constant-force spring. There is reasonable agreement between the simulation and experimental
results, with some deviation due to approximations made in the modeling process. The areas
under the curves for the existing and modified casters are about the same for a deflection of
22mm, thus absorbing about the same amount of energy. However, the peak load of the modified
caster is 5100N, which is about 65% of the 7900N peak load of the existing caster.

The experimental acceleration responses for both the existing and the modified casters under
identical shock conditions (i.e. 100 kg load, 100 bump and 3 km/h speed) are compared. Typical
results for seven consecutive bump tests are illustrated in Fig. 12. For each experiment, data are
collected from seven impacts to determine the average peak acceleration, and the standard
deviation.

Since the experimental evaluations were conducted in the testing center of a caster
manufacturer, we were limited by the existing equipment available to us at the time. The
sampling frequency used for data collection was 50Hz, which is too low to accurately locate the
exact peaks of the signal. A correction factor of 7% has been added to compensate for this effect.
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Fig. 10. Simulated (solid line) and experimental (dashed line) load–deflection curves for the existing caster.



ARTICLE IN PRESS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25
Deflection (mm)

Lo
ad

 (
N

)
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The simulated and experimental peak accelerations for the existing and modified casters are
compared in Fig. 13. The simulated peak accelerations are higher than the experimental average
peak accelerations, but are well within three standard deviations of the measured data. The
corrected experimental results show the peak acceleration of the modified caster to be 2.94g,
which is only 63% of the peak acceleration of the existing caster.

Even though it has been shown, both by simulation and physical construction/evaluation that
the proposed caster design can reduce the peak shock effectively, there are two potential
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Fig. 13. Simulated (solid line), experimental (dashed line) and corrected experimental (dotted line) peak acceleration for

existing and modified caster. Three-sigma error bars are shown for experimental results.
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drawbacks that should also be mentioned. The first one is that, if the actual shock disturbance
happens to be considerably higher than what has been assumed in the design, the proposed caster
could result in a higher shock when the deflection limit is reached. The other corresponds to the
situation that if the actual shock disturbance is less than what was assumed in the design, this
caster may result in a higher (designed) acceleration than that of a conventional caster. In other
words, the proposed design procedure leads to optimal performance when the operating
environment of the caster is close to that of the design condition.
7. Conclusions

In this paper, the principle of optimal shock-damping isolators is examined as an optimization
problem. A novel design for such an optimal shock-damping caster is presented based on the
principle of constant-force isolators. A near constant-force design is achieved using a multiple
spring mechanism with a toggling action. A prototype caster has been constructed by modifying
an existing caster. The parameters are determined by a least-squares-based optimization. The
performance of the modified caster is evaluated against the existing caster under exactly the same
conditions in simulations and experimentally. The experimentally determined peak acceleration of
the modified caster is only 63% of the peak acceleration of the existing caster. An experimental
load–deflection test shows that the modified caster is not quite a constant-force damper; however,
the peak force is also reduced to about 65% of the peak force of the existing caster at the same
deflection. The experimental data shows that the performance of the prototype is slightly inferior
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to what was obtained in the simulation due to unmodeled friction and other nonlinearities in the
physical construction. Nonetheless, significant improvement in performance has been achieved
with relatively modest and inexpensive design modifications to the existing caster.
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